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Abstract-Tbe effects of second-order terms on the velocity and temperature jumps at :wall are 
obtained by a physical derivation. The analysis uses the concepts of effective mean free paths for 
momentum and energy transfer; the effective mean free paths are obtained from known viscosities 
and thermal conductivities. The second-order slip flow analysis is applicable at somewhat lower 
pressures than is the first-order analysis and applies to non-monatomic as well as to monatomic gases. 
Several illustrative examples, including fully developed flow and heat transfer in a tube are considered. 
Differences between the first- and second-order corrections on the order of 20 per cent were noted in 

the region for which the analysis appears applicable. 
P* 

NOMENCUTC'RE 
area (Fig. 1); 
accommodation coefficient [equation 

specific heat at constant pressure; 
specific heat at constant volume; 
energy crossing dA per unit area per 
unit time from a given direction; 
total energy crossing dA per unit area 
per unit time from above; 
total energy crossing dA per unit area 
per unit time from below; 
fraction of molecules reflected diffusely 
[equation (1911; 
Maxwellian distribution function for 
molecular speeds [equation (a]; 
internal energy per unit mass other 
than translational energy; 
thermal conductivity; 
molecular free path; 
effective free path for internal energy 
transfer ; 
effective free path for momentum 
transfer ; 
effective free path for translational 
energy transfer ; 
hard-sphere free path, 
x-component of momentum crossing 
dA per unit time per unit area from a 
given direction; 

(@)I ; 

total x-momentum crossing dA per 
unit area per unit time from above; 
total x-momentum crossing dA per 
unit area per unit time from below; 
molecular mass; 
Nusselt number, 2qoro/(T, - Tb)k; 
continuum Nusselt number; 
number density, 
Prandtl number, cpp/k;  
pressure; 
actual pressure drop; 
pressure drop for continuum flow 
at velocity at which actual pressure 
drop is Ap;  
heat transfer per unit area per unit 
time; 
gas constant; 
tube radius; 
temperature ; 
x-component of mean velocity; 
x-component of molecular velocity; 
molecular speed; 
portion of x-velocity component that 
is random [equation (3)]; 

x, y, z, co-ordinates (Fig. 1). 

Greek symbols 
a, thermal diffusivity ; 

0, spherical co-ordinate (Fig. 1); 
Y, c,Icv; 
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K ,  Boltzmann’s constant ; 
P9 viscosity ; 
p, density; 
P, shear stress; 
p, spherical co-ordinate (Fig. 1); 
Q, defined by equation (14); 
w, angular velocity of dA; 

$dbsc:ip:s 
b, bulk; 
i, 

m, monatomic; 
r. reflected ; 
2, referring to translational energy; 
0, in velocity range do at velocity u ;  
M’, wall ; 
0, referring to point XO, yo, zo (Fig. 1) or 

to gas at wall; 
1, 2, referring to planes 1 and 2;  

referring to internal energy other than 
translational ; 

Superscript 
-. , overbar designates mean value. 

INTRODUCTION 
SLIP and temperature-jump boundary conditions 
have been used with considerable success in the 
analysis of slightly rarefied gases [I]. In this 
method of analysis, the continuum equations of 
momentum and energy are used throughout the 
gas, and the effects of the walls are taken into 
account by using appropriate boundary con- 
ditions. For a rarefied gas with velocity and 
temperature gradients, the velocity and tempera- 
ture of the gas next to the wall will differ from 
those of the wall. The gas next to the wall is 
made up of molecules coming from the wall and 
from a distance a mean free path away from the 
wall, so that its velocity and temperature will be 
between those of the wall and of the gas a mean 
free path away. If the mean free path is small, 
the velocity and temperature jumps will be 
negligible. 

In the usual analysis, the velocity and tempera- 
Iure jumps at the wall are assumed to be pro- 
portional to the normal velocity and tempera- 
ture gradients. rhat is a good assumption if the 
velocity and temperature profiles are essentially 
linear over a mean free path, as they will be if 
the gas is but slightly rarefied. At somewhat 

lower pressures, however, where the profiles may 
be non-linear over a mean free path, the jumps 
at the wall would be expected to be functions 
of the higher order normal and tangential 
derivatives. 

Second-order jump boundary conditions have 
been obtained in reference [2] by using Burnett’s 
approximate solution of the Boltzmann equation. 
Bul nett’s equations, however, have been found 
to give results that are not always in agreement 
with experiment [I]; in fact, in many cases the 
Navier-Stokes equations were found to be 
superior. Thus, attempting to obtain second- 
order jump boundary conditions by using a 
comparatively simple physical derivation* 
appears to be worthwhile. The Boltzmann 
equation will not be used herein, but the mo- 
mentum and energy carried across an area 
element by molecules that, in effect, had their 
last collision a distance equal to an effective 
mean free path from the element will be con- 
sidered. The effective mean free path, which has 
different values for momentum and heat 
transfer and which also differs from the usual 
hard-sphere mean free path, is then related to 
experimental viscosities and thermal conduc- 
tivities. The results differ somewhat from those 
of reference 2. 

The expressions for the velocity jump at a wall 
will be derived in the next section, after which the 
corresponding temperature jump will be con- 
sidered. The results. which use Eucken’s 
approximation [4], are applicable to both 
monatomic and non-monatomic gases. Inter- 
actions between the velocity and temperature 
fields, such as thermal creep, are neglected. 

MOMENTUM TRANSFER 
Consider the x-component of momentum 

carried by molecules across an area element dA 
located at XO, yo, zo. The plane of dA is normal 
to the z-axis (Fig. 1). If all the particles were 
traveling in a direction making an angle 0 with 
the z-axis and a polar angle v, the number of 
particles in the velocity range between u and 
u + du that pass though dA per second would 
be nofo du u cos 0 dA. The quantity no is the 
number density of particles at XO, yo, 20, andfo 

* A related analysis for thermal radiatlon in gas was 
recently carried out by the author (3). 

-~ ~~~ ~ ~~ 
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FIG. 1 .  Derivation of momentum and energy relations. 

is the corresponding velocity distribution func- 
tion. For an isotropic gas, the fraction of 
particles with velocities that make an angle 
between 8 and 8 + d8 with the z-axis and a polar 
angle between p, and g, + dg, is sin 8 d8 dp,/&. 
Thus, the actual number of particles in the 
velocity range du that pass through dA per unit 
time at an angle with the z-axis between 8 and 
8 + d8 and a polar angle between v and g, + dg, 
is 

dZ, = nofo dv u cos 8 dA sin 0 dB dg7/4n (1) 

To carry out the analysis, assume first, that the 
mean velocity of the stream is uniform and in the 
x-direction. (The effect of velocity gradients will 
be considered subsequently.) Then the x-mo- 
mentum carried across dA by molecules that are 
in the velocity range du and move at an angle to 
the z-axis between 8 and 8 + d8 and at a polar 

dM,,, = mux,O no f o  du u COS 8 dA sin 8 d8 dy/4n 

where m is the molecular mass and uz,o is the 
x-component of the velocity in the range du. 

I 

I angle between qj and g, + dp, is 

I (2) 
, 

Let 
I uz,o = uz.0 + IJz.0 (3) 

where UZ,o is the mean x-component of 
velocity at 0, and uZ,o is the portion of the 
x-component of velocity that is random. The 
random portion will have a Maxwellian velocity 
distribution. By use of equation (3), equation (2) 
can be integrated over all velocities to give 
H .M-ZR 
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dMz = dA (sin d cos 8 d8 dp?/44 J; mux,o no fo dr  
= dA (sin 8 cos 8 d8 dp,/4~) milo x 
(UX,o 1; ~$0 dr: + sin 8 cos g, Jg rafo dti) 

(4) 
where iix is written in spherical co-ordinates as 

(5) vx = u sin 0 cos p 
and 

Equation (6) gives, of course, the Maxwellian 
distribution function for molecular speeds. 

dMx = [dA (sin 8 cos 8 d8 dp/44  no501 [rnUZ,o 

(7) 
The last term in this equation is obtained by use 
of the relation 

L~ = (3/8) n t? 

which can be obtained by using equation (6). 
Equation (7) gives the x-momentum transferred 
per unit time across dA by molecules whose 
velocities make an angle between 8 and 8 + d8 
with the z-axis and a polar angle between and 
q + dg,, if the gas is moving at uniform velocity. 

If equation (1) is integrated over all values of 
11, the quantity in the first brackets in equation (7) 
is obtained. Thus that quantity gives the number 
of molecules that cross dA from the given angle 
range per unit time, and the quantity in the 
second brackets can be interpreted as the 
effective x-momentum carried per molecule. 
If the mass velocity is not uniform, the molecules 
will carry momentum that differs from 
mUz,o + (3/8) am& sin 8cos g,. Molecules that, in 
effect, had their last collision a distance Zc,,,, 
(effective mean free path for momentum 
transfer) from dA will carry x-momentum 
equal to mUz,l + (3/8) nmr% sin 8 cos p. Thus, 
equation (7) becomes 

dM, = [dA (sin 8 cos 8 dB dp,/4~) no801 [mUz,l + 
(8) 

The mass velocity Uz,z at a point x,y,z (Fig. 1) 
can be related to conditions at XO. yo, zo by 

Equation (4) becomes 

+ (3/8) n m8o sin 8 cos 9-1 

- 

(3/8) n m61 sin 8 cos g,] 
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expanding Uz in a three-dimensional Taylor series about XO, yo, ZO. This expansion gives 
m 

If the binomial theorem is applied twice to the factor in brackets, 

h-0 w - 0  r:O 

Equation (9) can be written in spherical co-ordinates le,m, 0, p with origin at dA by setting 

x - xo = le,m sin B cos p, y ~ yo = le,r,, sin B sin p, z - 20 = le,m cos B 

(9) ' 

It should be emphasized that le,m will, in general, be greater than the distance to the actual point 
of the last collision because of the persistence of velocities. That is, after a collision many of 
the molecules tend to continue traveling in the direction they traveled before collision. Equation 
(9) becomes, in spherical co-ordinates, 

zZh-zu ,y-$ ?x.v (10) 
1;. cod-w 0 sinw 0 sinw-8 p coss p 

(h - w)! (M' - s)! s! 
h:O w 0 s=0 

In equation (8), the term (3/8) nmdz sin 0 cos p gives the contribution of the random molecular 
velocities to the momentum transfer. If temperature gradients in the flow direction are assumed 
to be small, that term will drop out when we integrate over direction to get the total x- 
momentum passing through dA from above. If thermal gradients in the flow direction are large, 
that term may produce thermal creep effects, but those effects are neglected here. Thus, for 
simplicity, the last term in equation (8) will be omitted in the remainder of the analysis. 

Substituting equation (IO) in equation (8) and averaging over all values of le,m give 

d M =  mnol'o - -  dA 7 $ 9 q, __ sintu + I  B cosI1-Wf1 B sinw-s p coss p- 
- dBdg x ( - ~ 

aZh-w ayw-s ax- 47.r --4 (h - w)! (w - s)! s! 
h = O  w 0 7-0 

( 1  1)  
where the overbar on e,vn signifies an averaged value. To calculate the 
distribution function t,h for molecular free paths must be known. Jeans [SI has shown that t,h is 
given approximately by 

in terms of 

t,h = --exp 1 (- :J cl 

where c is a constant on the order of one, which accounts for the fact that i varies with velocity. 
Thus, 

- 1 "  
cl 0 

F = -= J F exp (- $) dl = h !  (ci)h 

This form is also assumed to apply to le ,m.  Thus, 
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where the constant c has been absorbed in the value of will later be related to known 
viscosities). Substituting equation (12) in (1 1)  and integrating to  obtain the total x-momentum 
passing through dA from above results in 

w h w  
mnot'o dA 

47l dM,I- = ~ 

h=O w=O s=O 

p o w d A 2  2 2 CoSh-W+l 6 sin"-8 3) dg, de = 
16T 

h=O w = O  s=O 

where 

and mno is replaced by the mass density Po. The symbol r stands for the gamma function. 
In order to  obtain the x-momentum passing through dA from below, we let 6 go from x / 2  to 
T, instead of from 0 to x/2,  and change the sign of the result: 

The shear stress acting on dA is the net x-momentum transferred per unit area through 
dA from above: 

dM,+ - dMy 
7 0  = ---___-- dA 

or 

Next the velocity slip at a tangentially moving wall that is immediately below, but not touching 
the area dA will be obtained. In order to do this, instead of a wall, a uniform gas below dA 
moving at the velocity Uw is first considered. Equation (15) then yields for dM; 

If the term for h = 0 is extracted from the summation in equation (13) and equation (17) is 
subtracted from that equation, there results 

r n h w  

(18) 
Consider next a wall moving at the velocity Uw, rather than a uniform gas, to be below dA. 

Then the fraction of the momentum of the molecules relative to the wall, which is, on the 
average, given up to the wall, is 



686 R. G .  DEISSLER 

where dMx,r is the momentum carried by reflected molecules. The momentum difference 
in the denominator of equation (19) is for a wall with perfect momentum accommodation and is 
taken to be the same as that which occurs when a uniform moving gas is below dA. The quantity 
F is sometimes interpreted as the fraction of molecules reflected diffusely, the rest being 
reflected specularly. The quantity dM,t - dM,,,., which is the net x-momentum transferred 
through dA from above, is dA times the shear stress. The shear stress is given by equation (16), 
since that equation is assumed to apply throughout the gas; the effect of the wall is accounted for 
by the jump boundary conditions. Setting T O  dA = dM,’ - dMz,r in equation (16), substi- 
tuting that equation and equation (18) in (19), and solving for UO - U ,  result In 

m h w  

) (20) 
ahu, 

ayw-. axs o’ ] Q (k ”3 4 JL ( Uo - u, LL 2 2 [-- -- -- ~- 
1 - (-1)h-w - F 

F 
h-1 w = o  s=o 

If we retain only terms through second order (terms containing second derivatives), equation 
(20) becomes 

Equation (16), correct to terms of second order, is 

where the subscripts 0 have been dropped because the equation is assumed applicable 
throughout the gas. Terms containing second derivatives are zero in equation (22). The 
Navier-Stokes equations can be derived from equation (22) and are thus applicable in the 
present analysis where second-order boundary conditions are used. It is significant that the 
Navier-Stokes equations give better results for rarefied gases or for large velocity gradients than 
certain other approximations, for instance, the Burnett equations 111. 

From equation (22), 
[e,, 1 3p/(pfi) 

and, since p = p/RT for a perfect gas, and 6 = (8RT/n)1’2 [equation (6)], 

j,,, ~ 5 J(;) P‘RT . 
P 

Thus, equation (21) becomes 

Equation (24) is written in terms of measurable quantities. The first term on the right-hand side of 
equation (24) is the usual first-order slip term [6 (p. 296)], and the second term gives the 
second-order contributions. Equation (24) applies for a wall below the gas. For a wall above 
the gas, a similar derivation gives. 
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Equations (22), (24), and (25) are the equations for second-order rectilinear slip flow according 
to the present method of analysis. They differ somewhat from those of reference 2. For 
instance, the numerical coefficient on a2Uz/az2 in equation (24) differs from that in reference 2, 
and the second derivatives with respect to x and y are absent in the corresponding expression in 
reference 2. It appears, however, from the present physical derivation that those derivatives should 
have an effect. 

Equations (22), (24), and (25) were derived on the assumption that the flow is rectilinear. If the 
fluid does not move in straight lines, as for concentric rotating cylinders, the area element 
dA will rotate, and the molecules crossing it will appear to have a different CJ, than they would 
have if the fluid were moving in straight lines. This effect can be taken into account by re- 
placing aU,laz in equations (22), (24), and (25) by aU,/az -t w = aU&z, + aU,/ax, and 
a2UZ/az2 by PU,/az2 + &/az = @UZ/az2 + aZU,/;ix az, where w is the angular velocity 
of dA. Equation (22) then becomes 

which is the generalized expression for shear stress used for deriving the Navier-Stokes 
equations. Similarly, equation (24) becomes 

("") &)+2 (a2uz) wo+2 (azuz)d. ax2 (24a) 

ENERGY TRANSFER 
The analysis of energy transfer is somewhat analogous to that of momentum transfer in the 

preceding section. Here, the energy carried by molecules across an area element dA is con- 
sidered. (See Fig. 1.) The number of particles dZu in the velocity range dv that pass through 
dA per unit time and make an angle with the z-axis between 0 and 0 + d0 and a polar angle 
between rp and rp + drp is again given by equation (1). First, the temperature of the gas is assumed 
to be uniform. Then, the energy carried across dA by molecules that are in the velocity range 
dc and move at an angle to the z-axis between 0 and 0 + d0 and at a polar angle between rp and 
cp + dcp is 

(26) 

where m10 is the internal energy of the molecules (energy other than translational). Integration of 
equation (26) over all molecular speeds with l o  independent of molecular speed gives 

dE, = [(1/2) mu2 + mIo] nofo dtl t' cos 0 dA sin 0 d0 d+/(4.r) 

Using equation (6) for f o  gives the relation 

so that 
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As in momentum transfer, the quantity in the first bracket gives the number ofmolecules that 
cross dA from the given angle range per unit time. The quantity (4/3) (1/2)m(v2)0 is the effec- 
tive translational energy, and mlo is the internal energy carried by each molecule. The factor 4/3 
appears in the expression for the effective translational energy because the molecules with 
large translational kinetic energy cross dA in greater numbers &dn du the s:owcr mG:.icg C X S .  

Equation (29) applies to a gas at a uniform temperature. If the temperature is n o t  uniform, 
the molecules crossing dA will carry effective kinetic energy equal to (4/3) (1/2)m(v2)z, where 
(1/2)m(u2)z is the average kinetic energy of molecules a distance l e , t  fr;oni dA ax! !e , t  IS the 
effective 1 for translational energy transfer. Similarly, the molecules will carry internal 
energy equal to mlz, which is the average internal energy of molecules a distance le,i from dA. The 
quantity le,( is the effective 1 for internal energy transfer and is not necessarily equal to 1e.t. 

Thus, equation (29) becomes 

Proceeding as for momentum transfer yields, in place of equation (lo), 
h 

(31) 
Ih c0sh-W 0 sinw 0 sinw-s p coss p 
Pt__ ~ -~ ~- 

(h - w)! ( w  - s)! s! azh-w ayw-8 8x8 
h:O w - 0  > = o  

and 

(32) 
cod-w 0 sinw 0 sinw-s p cos8 p 

~ -_ ~- 

i - r  L- (h - w)! (w - s)! s! 
h=O W - O  s=O 

Substituting equations (31) and (32) in equation (30) and averaging over all values of l e , t  and Ie, i  give 

sin 8 COS 0 d0 dp) - ] 9 2 2 __  c0sh-W 8 SinW ~ 8 sinw-s -- v cos8 __ v 
(h - w ) !  (w  - s)! s! d E =  P A (  --T~- - novo m 

4 
h=O w=O s=O 

Substituting for and from equation (12) (with le,m replaced by le , t  or l e , i )  and integrating 
to obtain the total energy passing through dA from above give 

h=O W - 0  s=O 

where Q (h, w,  s) is again given by equation (14). The change in total thermal energy of a molecule 
is d[(l/2)mT + mZ] = mcw dT, where cv is the specific heat at constant volume and T is the 
temperature. After Eucken [4], cv is written as cW,t + cv,i, so that d(1/2 02) = cv,t dT and 
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dZ = cV,i dT. If the variation of cu,t with temperature for derivatives of higher order than the 
first is neglected, equation (34) then becomes 

for the energy crossing dA from above. Similarly, the energy crossing dA from below is [equation 

dE- = pofio ___ dA 2 2 2' 4 ( 1 9 1  

( - l )h-w Q ( A ,  M', s) 5 la,, ca.t + Cv,i  r -  ~ 16x 
h - 0  r = O  s=o 

I The net energy or heat transferred in the direction z is 

42 = -r dE- - dE+ 

I 
or 

In order to obtain the effect of a wall on the heat transfer, we assume first, that there is a gas 
below dA at the uniform temperature Tw. Equation (36) then yields, for dE-, 

(i (38) 
1 

dE- = - poco dA 4 Cv,t + C O , ~ )  Tw 

If the term for n = 0 is extracted from the summation in equation (35) and equation (38) 
is subtracted from that equation, 

dE+ - dE- = -  pot;^ dA (i c ~ , ~  $- eo,*) (TO - Tw) + --16x 7' 7 7Q (h,  *+', s) (i cV,t 4- 
m h w  

1 poco dA 
4 &&-  

h = l  w = o  s:o 

If a wall at temperature T,, rather than a uniform gas, is placed below dA, the accommodation 
coefficient a is defined by 

dE+ - dEr 
dE+ - dE- a = - ~- 

where dEr is the energy reflected from the wall. As in the case of F [equation (19)], the accommo- 
dation coefficient a is regarded as a quantity to be determined by free-molecule flow experi- 
ments, inasmuch as its value depends on many variables and is difficult to predict [7]. But 
dE+ - dEr, the net energy transferred through dA in the z-direction, is -dA times the heat 
transfer per unit area and is given by equation (37). Setting -qz dA = dE+ - dEr in equation 
(37), substituting that equation and equation (39) in equation (40), and solving for TO - Tw give 

' 

' 
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The heat transfer, correct through terms of or 
second order, is given by equation (37) as 

aT 
q z  = - - PV 3 le,t Cv,t + le,i ~ v , t  )E - = - k -  

az 

le,t = ;{ J(s) P+ (47) 

3 T- Following Eucken [4], it is assumed that internal 

or 
(43) energy is transferred in the same way as mo- 

mentum, so that, by equation (23), 

The subscripts 0 have again been dropped 
because equation (43) is assumed to apply 
throughout the gas. For a inonatomic gas, 
equation (44) becomes 

Eucken also assumed that cv,t = (3/2)R, that is, 
that the transfer of translational energy is 
unaffected by the presence of internal energy. 
Since cv = cv,t + cv,i and cv = R/(y  - l), 

3(Y - 1)  (5 - 3Y) (49) cv, cv,i = -~ 2 cv (45) cv,t = 

But k ,  is related to p and cv,t by 

5 
km 1 2 pCv,t (46) 

Equations (44), (47), (48), and (49) give 
1 

k = (9y - 5) ~ c V  4 
- 

which is Eucken’s formula and has been found 
to give results for most gases that are in good 
agreement with experiment [6 (p. 180)]. Substi- 
tution of equations (44), (47), (48), and (49) in 

[6 (p. 178)]. From equations (45) and (40,  

45 P 
8 PV equation (42) gives 1e.t ~ -- 

for a wall below the gas. A similar derivation gives 

T w  - TO d ( 2 ~ )  (2 -- - ~ 4 -- - Y +--- 
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for a wall above the gas. Equations (43), (51), 
and (52) are second-order equations for heat 
transfer in a rarefied gas according to the 
present method of analysis. The application of 
these equations and those in the preceding 
section to several problems will be given in the 
following sections. 

PLANE C0LJE”E =OW AND HEAT TRANSFER 
For plane Couette flow with frictional heating 

neglected, the shear stress and heat transfer are 
independent of the distance from a wall. Thus 
equations (22) and (43) become 

profiles as given by equation (53) and (54) are 
linear. The velocity results are in good agree- 
ment with experiment [l (p. 721)J. 

FULLY DEVELOPED FLOW AND HEAT 
TRANSFER IN PASSAGES 

For fully developed flow in a tube, the shear 
stress varies linearly with distance from the 
centerline, so that equation (22) becomes 

r d ux 
- 7 0  = -P- 
ro dr 

or 

and 

T -  Ti = -- 922 
k (54) The derivatives in equation (25) can be calculated 

by setting r2 = 22 + y2 in equation (57) and 

(55) 

where L is the distance between the two walls 1 
and 2, and P and a have the same values for the 
two walls. The results in this case are the same 
as those for the first-order analysis. This is, of 
course, because the velocity and temperature 

Or, equation (57)9 

(59) 
1 70ro 
4 1 1  

u b  = UO +-  
From equations (58) and (59), 

7030 1 

A plot of equation (60) for F = 1 is given in Fig. 2. The term on the left-hand side of equation (60) 
is the same as the ratio of the actual pressure drop for the tube to that for continuum flow 
at the same velocity, if the pressure drop is small compared to the absolute pressure and 
entrance effects are small. These conditions are approximated in the data from reference 8 for 
hydrogen flow through a copper tube, and those data are included in Fig. 2 for comparison. 
These data are also representative of those for flow through glass tubes [SI. It is assumed 
that F = 1 for the data throughout the entire range of pressures, inasmuch as F = 1 
in the free molecular region. Also included is the curve for first-order slip flow obtained 
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Continuum flow Present onolysls ( F =  I )  
L 

0.2 I I I I I 1  I 
001 0.02 004 00600901 0.2 

CLdRJ- 2 
P O  J; 6 

FIG. 2. Comparison of present analysis of fully 
developed second-order slip flow in tubes with 
first-order analysis and experimental data. (Diffuse 

reflection at wall.) 

by neglecting the last term in the denominator 

of the right-hand side of equation (60). The 
predicted curve for second-order slip flow 
appears to be in considerably better agreement 
with the data than does that for first-order slip, 
although there is some scatter in the data. When 
pd(RT)/pro is on the order of 0-2, for which the 
analysis applies reasonably well, the difference 
between the first- and second-order equations is 
about 20 per cent. For values ofpq’(RTj /pro  
greater than those shown, the predicted values 
begin to deviate considerably from the data, and 
a second-order slip flow analysis evidently is not 
applicable. 

If flow between parallel plates is considered 
rather than flow through a tube, derivatives with 
respect to y are absent, and in place of equation 
(60) is 

- 

where zo is the half distance between the plates and 

ub =I-/ t o  UZ dz 
2 0  0 

Consider next the fully developed heat transfer in a tube with uniform wall heat flux. First-order 
slip flow for this case has been considered in reference 9. If axial conduction is neglected, the 
energy equation can be written for fully developed flow as 

For uniform wall heat flux, aT/ax is independent of r, and with the use of equation (57), 
equation (62) can be integrated to give 

The derivatives in the expression for the temperature jump at the wall [equation (52)] can be 
obtained by substituting r2 = 2 2  + y2 in equation (63) and letting y = 0 after differentiation. 
Equation (52) then becomes 



The bulk or mixed mean temperature for flow 
in a tube is 

With the use of equations (57) and (63), 

Tb - TO = 

aT 1 1 ToUoro 1 1 Tit-:  

Zri(-2'O ~- 3 p 1 w o  192 pz (66) 

or 
Tw - TO = T w  - TO + 

ST ( 11 1 Uop 1 U;p2)  
- Tori 
2X o n  (67) 

1 3  + 3 T z  + 2 -  
_____ 

1 UOP 

Writing a heat balance on a cylindrical element of 
fluid of radius ro gives 

where qo is the heat transfer per unit area from 
the wall to the gas. Substituting equation (68) 
in (67) and using the definition for Nusselt 
number, Nu = 2qoro/k(Tw - Tb), and equation 
(59) for ub gives 

Nu 2qoro 
1 (Tw-   TO)^ - +  - -~ - 

The first term on the right-hand side of equation 
(69) is obtained from equations (64), (68) and (59) 
as 

p d R T  97r (177y - 145) ___ 
pro 1024 y + 1 

and, from equation (58), 

F pro 

(71) 
2 7 ~  p d R T  + __ 
32 ( pro 

From equations (71), (70), and (69), Nusselt 
number can be calculated as a function of 
pd(RT)/(pro). The ratio Nu/Nue, where 
Nuc = 48/11, is plotted against pd(RT)/(pro). 
in Fig. 3. Curves are shown for y = 1.4, 
Pr = 0.7, F = 1, and for a = 1 and 0.5. 
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FIG. 3. Fully developed Nusselt number ratio for 
flow in a tube at uniform wall heat flux. F = 1, 

y = 1.4, Pr = 07. 

These values for y and Prandtl number 
correspond approximately to air and most 
diatomic gases. Included for comparison are 
curves for first-order slip flow and temperature 
jump. Second-order effects in this case are 
somewhat less than those in Fig. 2; however, the 
differences between the first- and second-order 
equations are still on the order of 15 per cent at 
a value of pz/(RT)/(pro) of 0.2 and an a of 1. 
The differences are less for smaller values of a. 

SUMMARY OF RESULTS 
The effects of second-order normal and tan- 

gential derivatives on the velocity and tempera- 
ture jumps at a wall in a rarefied gas were 
considered. Use was made of effective mean free 
paths for momentum and energy transfer that 
differ from the actual mean free path because of 
factors such as persistence of velocities, de- 
pendence of free path on velocity, etc. The 
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effective mean free paths were related to vis- 
cosities and other measurable quantities. The 
usual Navier-Stokes and energy equations in 
the gas was shown to be consistent with the use 
of second-order boundary conditions since, 
according to the analysis, the second-order terms 
are zero in the interior of the gas [equations (22) 
and (43)]. The velocity and temperature jumps 
at the walls are given by equations (22), (24), 
(22a), (24a), (51) and (52). The results agree 
with experiment at somewhat lower densities 
than does the usual first-order analysis. 
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Rksum6-Les effets des terrnes de second ordre sur  les sauts de vitesse et de temptrature ii une paroi 
sont obtenus par une dtrivation physique. L’analyse eniploie les concepts des libres parcours moyens 
effectifs pours le transport de quantitt de mouvement et d’energie, on obtient les libres parcours 
moyens effectifs a partir des viscositts et des conductivitts thermiques connues. L‘analyse de I’tcoule- 
ment de glissement du second ordre s’applique a des pressions bien plus basses que I’analyse du 
premier ordre et s’applique aussi bien 

On considtre plusieurs exemples illustratifs incluant I’6coulement entibrement developpe et le trans- 
port de chaleur dans un tube. On a rernarqut les difftrences de l’ordre de 20 pour cent entre les cor- 
rections du premier et du second ordre dans la rtgion pour laquelle l’analyse semble s’appliquer. 

des gaz polyatomiques qu’a des gaz rnonoatomiques. 

Zusammenfassung-Die Einflusse von Ausdriicken zweiter Ordnung auf Geschwindigkeits- und 
Ternperaturspriinge in Wandnahe liessen sich rnit Hilfe einer physikalischen Ableitung erhalten. 
Die Analysis benutzt das Konzept der effektiven mittleren freien Weglangen fur den Impuls- und 
Energietransport ; diese effektiven rnittleren freien Weglangen wurden aus der bekannten Viskositat 
und Warmeleitfahigkeit ermittelt. Die Gleitstromungsanalysis zweiter Ordnung ist fur etwas 
geringere Drucke anwendbar als die Analysis erster Ordnung und gilt sowohl fur einatornige als 
auch fur mehratomige Gase. Verschiedene anschauliche Beispiele auch fur voll ausgebildete Strornung 
und ausgebildeten Warmeubergang im Rohr werden angegeben. Differenzen zwischen den Kor- 
rekturen erster und zweiter Ordnung wurden im Bereich in dem die Analysis anwendbar erscheint 

in der Grossenordnung von 20 Prozent festgestellt. 


